
Hardware Support for Low-Cost Memory Safety
Rick Boivie †
IBM Research

rhboivie@us.ibm.com

Gururaj Saileshwar † ∗
IBM Research

gururaj.s@gatech.edu

Tong Chen
IBM Research

chentong@us.ibm.com

Benjamin Segal
IBM Research

bpsegal@us.ibm.com

Alper Buyuktosunoglu
IBM Research

alperb@us.ibm.com

Abstract—Programs written in C/C++ are vulnerable to
memory-safety errors like buffer-overflows and use-after-free.
While several mechanisms to detect such errors have been
previously proposed, they suffer from a variety of drawbacks
including poor performance, imprecise or probabilistic detection
of errors, or requiring invasive changes to the binary-layout
or source-code. Consequently, memory-safety errors continue to
exist in production-software and are a principal cause of security
problems.

In our project at IBM, we worked on a minimally-invasive
and low-cost hardware-based bounds-checking framework for
preventing out-of-bounds accesses and use-after-free errors. The
key idea is to re-purpose ”unused bits” in a pointer to store
an index into a bounds-information table that can be used
to catch out-of-bounds errors and use-after-free errors without
any change to the binary layout. Using this bounds-checking
framework, we implement a design for preventing Out-of-Bounds
accesses and Use-After-Free for heap-objects, that are responsible
for the majority of memory-safety errors in the wild.

I. INTRODUCTION

Applications written in memory-unsafe languages like
C/C++, are vulnerable to memory-safety errors like buffer-
overflows, use-after-free, and others. Such errors have been
exploited in numerous attacks in the past [22], including
high-profile attacks such as the Morris worm [17] and Heart-
bleed [2], and are ranked by MITRE [1] to be some of the most
dangerous software bugs. A recent study by Microsoft revealed
that such errors continue to be the root cause of approximately
70% of the CVEs identified in their production-software, as
shown in Figure 1. In particular, errors affecting heap-objects
like heap-corruption, heap out-of-bounds accesses, and use-
after-free, caused 50% of the CVEs in 2019 in Microsoft’s
software (a study by Google showed heap-errors make up 60%
of memory-safety bugs detected in their software [19]). Most
recently, a heap-error bug existed in plain sight for nearly 10
years, that allowed local users to gain root access through
a privilege escalation attack [3]. Hence, the main focus of
this work is on heap-errors (although our ideas are equally
applicable to memory safety for globals and stack objects.).

II. PITFALLS OF PRIOR MEMORY SAFETY SOLUTIONS

Prior solutions for providing memory safety at runtime
can be classified into two categories: those that provide
probabilistic-detection and those that provide bounds-checking
based prevention. Probabilistic-Detection based approaches
allow detection of (some) memory errors – by inserting trip-
wires around objects, or randomizing memory layouts or

† Equal contribution.
* Gururaj Saileshwar is currently affiliated with Georgia Tech

2006 2008 2010 2012 2014 2016 20180%

25%

50%

75%

100%

%
 o

f C
VE

s

Heap Corruption
Uninitialized Use
Others

Heap OOB Read
Type Confusion

Use-After-Free
Stack Corruption

Fig. 1. A recent study from Microsoft [11] on the root cause of CVEs shows
that memory-safety errors cause >70% of the CVEs, with Heap-Corruption,
Heap OOB Read, and Use-After-Free errors causing almost 50% of the CVEs.

Fat-

Pointers

OOB?

Ptr ?

Low-Fat

Pointers

OOB?

?Ptr

Bounds

Shadow-

Tables

?Ptr

Bounds

OOB?

(Our work)

Inline Index,

Disjoint Bounds

?Ptr

Bounds

OOB?

ID

(a) (c) (d)(b)

Bounds

Changes 

Binary Layout

Cannot provide 

Temporal Safety

High-overhead

Table Lookups

Minimally Invasive
Low-Cost Lookups

Spatial & Temporal

Safety

Fig. 2. Pitfalls of prior bounds-checking based solutions.

associating pointers and objects with ”colors” that can be
matched. While these solutions are typically easy to adopt
(without prohibitive slowdown or compatibility issues), they
lack complete coverage and allow errors to remain undetected.
Bounds-Checking based solutions enforce safe program be-
havior by verifying that pointer dereferences are within valid
object-bounds, and allow precise enforcement of spatial and
temporal memory-safety. Unfortunately, such solutions face
two drawbacks that make them difficult to adopt:

1. Incompatibility with Library-Code: Fat-pointer based
solutions [8], [15] including CHERI [23], as shown in Fig-
ure 2(a), store bounds-information for a pointer in a separate
word alongside the actual pointer value, so that a bounds-check
can be performed when the pointer is dereferenced. However,
this requires changes to the binary layout that is incompatible
with legacy library-code. Low-Fat Pointers [9] avoid binary
changes by storing bounds implicitly within the pointer (as
in Figure 2(b)), but cannot provide temporal safety, such as
use-after-free, as they are unable to detect dangling pointers.

Gururaj Saileshwar
2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S)



Pointer initialized 

using a malloc

Pointer Dereference 

during Load/Store 

Object deleted 

using free(ptr)

malloc allocates BIEntry (base,size) for object 

& embeds Index to BIEntry in top-bits of Ptr

Hardware performs bounds-checks 

(using Index in top-bits of Ptr)

free checks BIEntry (ensures free is valid) 

& invalidates BIEntry (prevents use of dangling ptr) 

Derived 

Pointer

(Index flows) 

C/C++ 

Program

Shared Library with 

malloc/free hooks 

for BITable management

Hardware inserts 

bounds-checks 

for loads & stores 

Compile-Time Run-Time

Fortified 

Binary

Run

Link

LLVM

Instrumentation 

to initialize hooks

(a) Life-cycle of a Pointer in HeapCheck (b) Software and Hardware support required 

Fig. 3. Overview of our proposal. (a) Life-cycle of a heap-object pointer, and associated operations with bounds-information entry (BIEntry) in the bounds-table
(BITable) to enforce memory safety. (b) Changes in SW and HW made to enable our proposal.

(a) Hardware Organization (b) Scenarios for Slowdown Due to Bounds-Checks

Core

Main-Memory

L1D Cache

L2 Cache

Data 

Load/Store

Bounds-

Check

BICache

Bounds-Check

BICache Hit

D
a

ta
-A

ccess

L1DCache

 Hit

L1DCache 

Miss

BICache Miss

No 
Slowdown

No 
Slowdown

Execution continues 
as BICache-Miss 

Serviced

BICache-Miss and 
L1-DCache Miss

Serviced in Parallel

Slowdown if 

BICheck-Pending 

when Instruction 

reaches Commit}

Fig. 4. (a) Hardware organization (b) Scenarios for Slowdown Due to Bounds-Checks

2. High Performance Overhead: Shadow-table based solu-
tions maintain bounds-metadata in a table in shadow memory
that is indexed using the pointer-value to minimize changes
to binary layout. However, the extra memory accesses for
bounds-checks due to expensive (and in some cases multi-
level) table-lookups using the pointer-value, leads to high
slowdowns – MPX [16] and BOGO [24] incur 50%–60%
average slowdown, Watchdog [14] incurs 24% slowdown,
Softbound+CETS [12], [13] incurs 116% slowdown; recent
work Chex86 incurs 14% slowdown on average, but a higher
worst-case slowdown of 40%.

III. OUR APPROACH

The goal in our project is to provide strong memory safety
for heap-objects with hardware-based bounds-checking and
prevent errors like out-of-bounds access and use-after-free. At
the same time, to enable adoption, we want to achieve this
with negligible slowdown and with minimal changes to the
binary layout. To that end, we develop a minimally invasive
bounds-metadata organization, as shown in Figure 2(d), where
a pointer is associated with a unique inline identifier, used to
index into a bounds table in a low-cost manner.

The main idea of our proposal is to store the bounds-
metadata of an object throughout its lifetime in a per-process
bounds-information table (BITable), within the program’s vir-
tual address space, and enforce hardware-based bounds-checks
on all object accesses at runtime. Figure 3(a) shows the life-

cycle of a pointer during program runtime. When an object is
created, an entry is created (BIEntry) in the BITable to store its
base-address and size, and the index of the corresponding entry
in the BITable is embedded within the top bits of the object’s
address. When the address is dereferenced, the hardware uses
the index within the top-bits to access the corresponding
BIEntry and perform a bounds-check to detect out-of-bounds
accesses. When an object is freed, its BIEntry is invalidated,
allowing detection of temporal errors if dangling pointers to
freed objects are used subsequently.

We divide the responsibilities between the software and
hardware as shown in Figure 3(b). The software manages
the BITable: we use hooks for malloc and free functions
to intercept calls to these functions, and perform associated
BITable operations such as allocation and invalidation of
BIEntries. We define these hooks in a shared-library that can
be added by the linker during program compilation, without
requiring any changes to the source-code and without any
compatibility issues due to changes to the binary layout. The
hardware, on which this binary runs, transparently executes
the bounds-checks for every load and store to detect memory
safety violations: we modify the load and store execution
in hardware to access an entry in the BITable and use that
information to check bounds on loads and stores; we add a
bounds-information cache (BICache), shown in Figure 4(a) to
minimize the impact of accesses to the BITable in memory.
Hardware in our proposal includes a dedicated BICache for



caching BITable entries, that is accessed for Bounds-Check
in parallel to the L1-Dcache on Loads/Stores. As shown in
Figure 4(b), assuming TLB-Hit for Data-Access and Bounds-
Check, slowdown is incurred only if the Bounds-Check has a
BICache-Miss and the check is still pending by the time the
load/store instruction reaches commit-stage.

Overall, the benefits of our design over prior works include:
• Unchanged binary layout, that retains compatibility

with library-code, unlike prior fat-pointer based ap-
proaches [8], [15], [23].

• No overhead for propagation of the index which happens
”automatically” on pointer assignments and pointer arith-
metic, and even type cast, unlike prior solutions which
require extra instructions [4], [6], [13], [16] or micro-
ops [14], [20] to propagate bounds information.

• Providing temporal safety at no extra-cost, as the location
of the bounds-information (determined by the index) is
independent of the pointer-value. So our solution main-
tains invalid-bounds status for dangling pointers even af-
ter the freed memory is reused, unlike prior shadow-table
based bounds-checking solutions [5], [9], [14] where the
bounds-metadata location is linked to pointer-value.

IV. PERFORMANCE EVALUATIONS

We package the software changes for our proposal (in-
cluding the malloc/free hooks) as a shared-library and use
instrumentation added with LLVM10 to add an initialization
function before the program main. The hardware changes for
our proposal are modeled in Gem5 v20.0 [10].

We tested our proposal with the exploits from the
How2Heap [21] exploit suite that leverage heap spatial and
temporal safety bugs like out-of-bounds accesses, use-after-
free, invalid-free, and double-free. Our proposal was able to
detect the bugs in all 25 of these programs and raise an
exception to terminate the program before the objective of
the exploit is achieved.

For our performance evaluations, we also use 13 C/C++
benchmarks available in SPEC-CPU2017 [7] with the ref
dataset. We show that our framework prevents memory safety
errors when pointers are passed to un-instrumented library-
code. Our solution identified memory-safety bugs in 87 lines
of code in commonly-used Glibc-v2.27 and SPEC-CPU2017
functions, with aggressively optimized SIMD instructions ac-
cessing out-of-bounds memory, that, to our knowledge, were
previously undetected even with state-of-the-art tools like
Address Sanitizer [18].

We first evaluated the slowdown due to the malloc/free
instrumentation. Figure 5 shows the execution time of appli-
cations linked with our shared-library intercepting malloc/free
calls to update the BITable, normalized to the execution time
of uninstrumented binaries. On average, the SW instrumenta-
tion for BITable management (without bounds-checks) adds
only 0.5% slowdown across all programs.

We then evaluated the slowdown due to the hardware
bounds-checks with an 8Kbyte BICache. Note that in our
design we can get a high hit rate in a fairly small BICache

gcc
pa

res
t

xa
lan

cbm
k

pe
rlb

en
ch

lee
la

ble
nd

er

po
vra

y
mcf na

b
na

md xz lbm

de
ep

sje
ng

Mea
n

-1.0%
0.0%
1.0%
2.0%
3.0%
4.0%
5.0%

Sl
ow

do
wn

 (%
)

1.8%
0.8% 0.6%

2.4%

0.6%

-0.4%-0.3%

0% 0% 0% 0.4% 0.1% 0.1% 0.5%

288K 170K 105K 101K 52K 13K 12K 500 400 30 0 0 0

x Mallocs/Sec
Slowdown

Fig. 5. Performance Impact of Software Instrumentation for BITable manage-
ment, modeled using native execution. On average, the SW instrumentation
adds 0.7% slowdown.

gcc
pa

res
t

xa
lan

cbm
k

pe
rlb

en
ch

lee
la

ble
nd

er

po
vra

y
mcf na

b
na

md xz lbm

de
ep

sje
ng

Mea
n

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Sl
ow

do
wn

 (%
)

1.4%

3.5%

5.7%

1.4%
0.7%

0% 0.3% 0% 0% 0% 0% 0% 0%
1.0%

4.7% 1.7%15.7%0.7% 1.0% 0.1% 0% 0% 0% 0% 0% 0% 0%

x% BICache Miss-Rate
Slowdown

Fig. 6. Performance Impact of Hardware Bounds-Checks. On average, the
bounds-checks add only 1% slowdown, owing to high BICache hit-rates
(larger than 98%).

since all the addresses within a given buffer and all the pointers
to the buffer have the same value in their index bits and
use the same entry in the BICache. As the BICache is only
a few KBs in size, it can even be saved and restored on
a context-switch. (Even if the BIcache is not preserved on
a context-switch, since all the addresses for a single buffer
share a single entry in the BICache, the BICache will tend
to be quickly re-filled with the necessary bounds information
when a process is re-dispatched.) Figure 6 shows the execution
time for 1-billion instructions of our instrumented binaries
running with Bounds-Checks, normalized to execution time
of the same binary without Bounds-Checks. On average, the
bounds-checks add only 1% slowdown. The main driver of
these overheads is the memory-accesses incurred by bounds-
checks due to misses in the BICache. Workloads such as
xalancbmk, gcc and parest, with high frequency of mallocs,
tend to have smaller buffers and hence fewer buffer accesses
sharing the same index. This results in larger working-sets of
bounds-metadata, causing higher BICache miss-rates (2% to
16%) and higher slowdown (1% to 6%). Other workloads, with
more than 99% BICache hit-rate, have negligible slowdown.

V. LESSONS LEARNED AND CHALLENGES AHEAD

While memory safety bugs in C/C++ programs have been
a leading cause of vulnerabilities for over three decades, an
effective memory safety solution, that is also practical to adopt,
has thus far been elusive. Our project resulted in a low-cost,
hardware-based solution for bounds-checking that provides
precise detection of errors like buffer-overflows and use-
after-free in heap-objects. Our practical solution has minimal



performance overhead (less than 2% slowdown), and maintains
compatibility with legacy library-code. Throughout the project
we have learned valuable lessons:

1) With a hardware/software co-designed approach, it is
feasible to implement a low-cost hardware solution to
memory safety problems that have been with us for more
than 30 years with minimal performance impact.

2) Precise enforcement of spatial and temporal memory-
safety is a must; otherwise errors can remain undetected
and the investment will be wasted.

3) Changes to source-code or binary-layout should be
avoided. Compatibility is key for adoption.

4) Propagating pointer-metadata should be efficient. Our
solution does not incur any overhead for propagation
of the index which happens ”automatically” when one
pointer is assigned to another, passed in a function call,
or used to compute another address in array indexing or
pointer arithmetic. This is unlike prior solutions – and
programming languages that provide memory safety –
which require extra instructions to propagate metadata.

5) The performance impact of the actual bounds-checking
should be minimal. Extra memory accesses for bounds
information should be minimized. In our solution, since
all the addresses associated with a given buffer have the
same index, the bounds information for an address is
often available in the on-chip BIcache.

Although our approach seems to provide an effective and
low-overhead solution, several challenges remain:

1) If the number of ”live” objects exceeds the size of the
BITable, e.g. if the number of live objects exceeds the
number that can be represented by the index bits in a
pointer, an overflow table similar to the tables used in
prior work could be used. If 24 index bits are available,
an overflow table could be used when the number of
live objects exceeds 16M.

2) The Bounds-checking framework should be compat-
ible with multi-threaded workloads. To support such
workloads, the malloc and free functions should be
implemented in a thread-safe manner by using locks to
ensure atomic updates to the BITable.

3) Our approach can protect a program from a wide va-
riety of memory-safety bugs and thus provides some
protection for the integrity of the BITable. Additional
protection for the BITable can be provided with some
additional overhead.

4) Bound cache management is an area that could benefit
from further study. For example, a separate prefetch
engine for the BICache could be desirable to increase
BICache hit rate and take BICache load off the critical
path of the actual load or store.

5) It is possible, as a result of array indexing or pointer
arithmetic, that the arithmetic will overflow and corrupt
the index bits in a pointer which could cause an out-
of-bounds reference or a use-after-free reference to be

undetected. While the likelihood of this is low, our
approach could be improved to eliminate this possibility.

6) Our technique can provide precise detection of out-
of-bound references even when objects are nested. We
intend to explore this use case in the future.

VI. CONCLUSIONS

We presented a low-cost hardware-based solution for
bounds-checking that detects errors like buffer-overflows and
use-after-free in heap-objects. Our proposal has minimal per-
formance overhead (less than 2% slowdown), maintains com-
patibility with legacy library-code and has detected 87 lines of
code with memory safety bugs in Glibc functions and SPEC-
CPU2017 workloads, that, to our knowledge, were previously
undetected. This can provide an effective, low-cost, deployable
solution that can protect software from an important problem
that has existed for more than 30 years.

REFERENCES

[1] 2019 CWE Top 25 Most Dangerous Software Errors. https://cwe.mitre.
org/top25/archive/2019/2019 cwe top25.html.

[2] Buffer Overflow (BOF) Examples - Heartbleed. https://samate.nist.gov/
BF/Examples/BOF.html.

[3] Heap-based Buffer Overflow Leads to Privilege Escalation. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3156.

[4] Periklis Akritidis and et al. Baggy bounds checking: An efficient and
backwards-compatible defense against out-of-bounds errors. In USENIX
2009.

[5] Joe Devietti and et al. Hardbound: architectural support for spatial safety
of the c programming language. ASPLOS 2008.

[6] Gregory J Duck and et al. Heap bounds protection with low fat pointers.
In CC 2016.

[7] https://www.spec.org/cpu2017/. Spec benchmarks.
[8] Trevor Jim and et al. Cyclone: A safe dialect of c. In USENIX 2002.
[9] Albert Kwon and et al. Low-fat pointers: compact encoding and

efficient gate-level implementation of fat pointers for spatial safety and
capability-based security. In SIGSAC 2013.

[10] Jason Lowe-Power and et al. The gem5 simulator: Version 20.0+.
arXiv:2007.03152, 2020.

[11] Matt Miller. SSTIC-2020. Pursuing Durably Safe Systems
Software. https://github.com/microsoft/MSRC-Security-Research/tree/
master/presentations/2020 06 SSTIC.

[12] Santosh Nagarakatte and et al. Cets: compiler enforced temporal safety
for c. In ISMM 2010.

[13] Santosh Nagarakatte and et al. Softbound: Highly compatible and
complete spatial memory safety for c. In PLDI 2009.

[14] Santosh Nagarakatte and et al. Watchdog: Hardware for safe and secure
manual memory management and full memory safety. In ISCA 2012.

[15] George C Necula, Scott McPeak, and Westley Weimer. Ccured: Type-
safe retrofitting of legacy code. In POPL 2002.

[16] Oleksii Oleksenko and et al. Intel mpx explained: A cross-layer analysis
of the intel mpx system stack. POMACS 2018.

[17] Hilarie Orman. The Morris worm: A fifteen-year perspective. IEEE
Security & Privacy, 1(5):35–43, 2003.

[18] Konstantin Serebryany and et al. Address sanitizer: A fast address sanity
checker. In USENIX ATC, 2012.

[19] Kostya Serebryany. Oss-fuzz - google’s continuous fuzzing service for
open source software. 2017.

[20] Rasool Sharifi and et al. Chex86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities. In ISCA 2020.

[21] Shellphish. How2heap github repository. https://github.com/shellphish/
how2heap, (accessed August 1, 2020).

[22] Laszlo Szekeres and et al. Sok: Eternal war in memory. In 2013 IEEE
Symposium on Security and Privacy.

[23] Jonathan Woodruff and et al. The cheri capability model: Revisiting risc
in an age of risk. In ISCA 2014.

[24] Tong Zhang and et al. Bogo: buy spatial memory safety, get temporal
memory safety (almost) free. In ASPLOS 2019.


