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Abstract—Securing off-chip main memory is essential for pro-
tection from adversaries with physical access to systems. However,
current secure-memory designs incur considerable performance
overheads – a major cause being the multiple memory accesses
required for traversing an integrity-tree, that provides protection
against man-in-the-middle attacks or replay attacks.

In this paper, we provide a scalable solution to this problem
by proposing a compact integrity tree design that requires fewer
memory accesses for its traversal. We enable this by proposing
new storage-efficient representations for the counters used for
encryption and integrity-tree in secure memories. Our Morphable

Counters are more cacheable on-chip, as they provide more
counters per cacheline than existing split counters. Additionally,
they incur lower overheads due to counter-overflows, by dynam-
ically switching between counter representations based on usage
pattern. We show that using Morphable Counters enables a 128-
ary integrity-tree, that can improve performance by 6.3% on
average (up to 28.3%) and reduce system energy-delay product
by 8.8% on average, compared to an aggressive baseline using
split counters with a 64-ary integrity-tree. These benefits come
without any additional storage or reduction in security and are
derived from our compact counter representation, that reduces
the integrity-tree size for a 16GB memory from 4MB in the
baseline to 1MB. Compared to recently proposed VAULT [1], our
design provides a speedup of 13.5% on average (up to 47.4%).

Index Terms—Memory Security, Replay Attack, Merkle Tree,
MAC, Intel SGX, Split Counters, Encryption, Compression.

I. INTRODUCTION

Securing system main-memory from physical attacks is
important for building trusted data-centers. Numerous attacks
[2], [3], [4], [5], [6] have demonstrated that adversaries
with physical access can take control of a system through
unauthorized reads and modification of main-memory contents.
Commercial solutions like Intel’s Software Guard Extensions
(SGX) [7], [8] take an important step towards secure memories,
by providing data encryption, integrity and replay attack pro-
tection for small regions of main memory. However, extending
such mechanisms to secure entire memories comes at the cost
of considerable performance overheads [1], [9], [10].

Securing commodity memory requires security metadata
on each data access. For data encryption, a counter needs
to be fetched from memory. For verifying data integrity, a
cryptographic hash of data (MAC) is fetched from memory.
Furthermore, to prevent replay attacks, an integrity tree is
traversed generating several additional memory accesses. These
accesses stress the memory bandwidth causing performance
slowdown. While recent proposals [1], [10] address the
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overheads of accessing MACs, integrity-tree traversal continues
to be a bottleneck as it can generate several memory accesses.

Prior proposals optimize integrity tree traversal by caching
tree entries in on-chip caches [7], [11], [12]. However, they
side-step the real problem – the large size of the integrity-tree.
For example, protecting a 16 GB memory with an SGX-like
integrity-tree design would require a tree as large as 292MB,
that is hardly cacheable on-chip. Therefore, in this paper we
explore compact integrity tree designs with higher cacheability,
to reduce memory accesses for integrity-tree traversal.

State-of-the-art integrity-trees are constructed over the entire
footprint of the encryption counters [13]. A smaller footprint
obtained by packing more encryption counters per cacheline,
can shrink the base of the integrity-tree and reduce its size.
Additionally, commercial designs like SGX use integrity-trees
that are designed as a tree of counters [7], where the tree-arity
(fan-in per node) is determined by the number of counters per
cacheline-sized entry. As the arity dictates the ratio by which
each tree-level reduces in size, packing more counters per
tree-entry can further reduce the tree height. Thus, to enable
compact integrity trees, we investigate counter organizations
that can provide a large number of counters per cacheline.

Prior work [14] proposed split counters for encryption, to
accommodate more counters per 64-byte cacheline. This design
can pack up to 64 counters per cacheline, by sharing a large
major counter among 64 smaller minor counters. The minor
counter is incremented when the corresponding data cacheline
is updated in memory, while the major counter is incremented
when any minor counter overflows. A recent work [1] also
proposed using a similar split counter design for integrity-tree
counters, to pack more counters per cacheline-sized tree entry.

However, it is impractical to store more than 64 counters
per cacheline by reducing minor counter size. This is because
smaller counters can overflow frequently. On an overflow, all
the n-minor counters in an entry are reset after incrementing
the major counter. This requires extra memory reads and writes
– for re-encrypting n-child data cachelines on an encryption
counter overflow, and for updating hashes of n-child entries on
an integrity tree counter overflow. For example, packing 128
counters per cacheline results in 3-bit minor counters that can
overflow in just 8 writes. As each overflow requires 256 extra
memory accesses, this can cause significant slowdown.

All existing counter organizations are limited to 64 counters
per cacheline, as they statically provision an equal number of
bits for all the counters. However, we observe that applications
utilize counters in distinct patterns which allow efficient counter



designs that overflow less frequently. Leveraging this, we
propose Morphable Counters (MorphCtr), that dynamically
changes the counter representation based on the usage pattern
– allowing storing more than 64 counters in a cacheline while
limiting the re-encryption overheads incurred due to overflows.

Our analysis of overflowing counters shows that applications
either use less than a quarter of the counters in a cacheline
or use all the counters in a cacheline. For example, usage of
encryption counters depends on the write-intensity per data
cacheline. As applications write uniformly to most cachelines
within a write-heavy page, frequently overflowing encryption
counters see uniform usage within a cacheline. However, usage
of integrity-tree counters depends on write-intensity per page.
As write-heavy and cold pages can be interspersed in memory,
integrity-tree counters see sparse usage of few counters within
a cacheline. Furthermore, higher levels of the tree do not suffer
counter overflows, as writes do not propagate beyond the level
of the tree that completely fits in the on-chip cache.

When 64 or less counters are used out of 128 counters in a
cacheline, MorphCtr uses a representation called Zero Counter
Compression (ZCC) that performs utility-based allotment of
space to non-zero minor counters in a cacheline. ZCC uses a
bit-vector to track the non-zero minor counters in a cacheline
and distributes the rest of the bits in the cacheline only to those
counters. For example, with 16 non-zero counters, each counter
gets 16-bits while with 32 non-zero counters, each gets 8-bits
and so on. Thus, MorphCtr provides large overflow-tolerant
counters while packing 128 counters per cacheline, when at
most a quarter of the counters within a cacheline are used.

When more than 64 out of 128 counters are used, MorphCtr
uniformly allocates 3-bits per minor counter. In this regime,
most workloads tend to use all the counters in a cacheline,
with low dynamic-range in counters. Leveraging this, MorphCtr
represents each minor counter in the cacheline as the sum of
a common base and an offset. When any offset crosses its
max-value, the counters are re-based instead of being reset, i.e.
the base is moved forward by the smallest offset and all offsets
are reduced by that value. This provides the largest offset room
to grow, without changing other minor counter values, thus
avoiding an overflow and subsequent re-encryption overheads.

Compared to split counters, MorphCtr provides a higher
density of counters per cacheline, while incurring fewer
overflows. Thus, it is a practical alternative to reduce storage
and performance overheads of secure memories. For example,
using MorphCtr for encryption can reduce the memory footprint
of the encryption counters by 2x. This is because MorphCtr-
128 packs 128 counters per cacheline as compared to split-
counters with 64 counters per cacheline (SC-64) in the baseline.
Additionally, as encryption counters form the base of the
integrity-tree, this also reduces the integrity tree size by 2x.

Furthermore, using MorphCtr for the integrity-tree counters
enables a compact 128-ary MorphTree. As the arity dictates
the ratio by which each tree-level reduces in size, a 128-ary
integrity tree has each level smaller by 2x compared to a 64-ary
design obtained with SC-64 counters in the integrity tree. Thus,
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Fig. 1. Using MorphCtr-128 for encryption and integrity-tree results in a
compact 128-ary integrity-tree (MorphTree) that allows low-overhead traversal.
MorphTree is 4x smaller than Baseline and 8.5x smaller than VAULT.

using MorphCtr-128 for both encryption and integrity-tree
results in a 4x smaller integrity-tree compared to our baseline
which uses SC-64 for both, as shown in Figure 1. As a more
compact tree is also better cacheable on-chip, MorphCtr-128
reduces the memory accesses for the integrity-tree traversal
and improves performance compared to SC-64.

Overall, this paper makes the following contributions:

1) Morphable Counters, an overflow-tolerant counter de-
sign capable of high density of counters per cacheline,
that is 2x more storage-efficient than split counters.

2) MorphTree, a 128-ary integrity-tree using MorphCtr.
Combined with MorphCtr for encryption, this reduces
integrity-tree size by 4x compared to SC-64 baseline.

3) Zero Counter Compression, a scheme for reducing
the counter overflow frequency, when few counters in a
cacheline are used – by compressing zero value counters
and expanding the non-zero counters.

4) Re-basing instead of resetting minor counters, to avoid
overflows and the subsequent re-encryption overheads,
when all the counters in a cacheline are used.

We evaluate Morphable Counters with 28 memory intensive
workloads from SPEC2006 and GAP benchmark suites and
compare our design with a baseline using split counters with 64
counters per cacheline (SC-64) for both encryption and integrity
tree. Using MorphCtr-128 improves performance by 6.3% on
average (up to 28.3%) and reduces energy-delay product by
8.8% on average. These benefits come without any extra storage
or reduction in security and stem from a compact integrity-tree
design enabled by merely interpreting counters differently. For
a 16 GB memory, the SC-64 baseline requires an integrity tree
that is 4MB in size (4 levels), while our 128-ary tree using
MorphCtr is only 1MB (3 levels).

Compared against VAULT [1], a recent proposal using split
counters in the integrity-tree, MorphCtr-128 provides speedup
of 13.5% on average (up to 47.4%). VAULT uses a variable
arity of split counters (16 or 32 counters per cacheline) to limit
counter overflows, resulting in a large integrity tree (8.5MB
size, 6 levels). We propose an orthogonal approach to reduce
counter overflows, that allows a compact 128-ary integrity-tree
(8.5x smaller, 3 levels shorter), improving performance.



II. BACKGROUND AND MOTIVATION

We first provide background regarding secure memory design.
We then describe the performance overheads with secure
memories and motivate our compact integrity tree design.

A. Secure Memory Design
1) Attack Model: We assume that adversaries have physical

access to the system. Similar to prior works [1], [9], we
assume the processor to be within the trusted computing base,
with the off-chip main-memory and memory-bus vulnerable
to unauthorized reads, modification or replay attacks. In this
context, providing memory security (like SGX) involves data
confidentiality with counter-mode encryption, ensuring data
integrity with Message Authentication Codes (MACs) and
replay attack protection using integrity-trees.
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Fig. 2. Counter-Mode Encryption

2) Data Encryption with Counters: To prevent attackers
from reading memory contents, data is encrypted with Counter
Mode Encryption [14], [15]. As shown in Figure 2, a plaintext
data cacheline is encrypted through an XOR with a One Time
Pad (OTP). Similarly, decryption is done through an XOR of
the cipher-text with the OTP. The OTP is a secret bit-string
generated by passing a per-line counter through a block cipher
like Advanced Encryption Standard (AES), with a secret key.
The counter is incremented on each cacheline-write to ensure
temporal variation in the encrypted data. While these counters
are stored in the memory, they are cached on-chip [7], [11]
to avoid extra memory accesses for the counter and allow the
OTP to be pre-computed in parallel with the data-access.
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Fig. 3. Split counter design for counters

A split counter [14] design, further packs a large number of
counters in a cacheline, to reduce the storage and the memory
traffic of counters. This is achieved by encoding the counter
value as a concatenation of a large major counter and a smaller
minor counter, as shown in Figure 3. To avoid counter reuse1

on a minor counter overflow, the major counter is incremented
and all the minor counters in the cacheline are reset. This
requires additional memory reads and writes to re-encrypt all
the data cachelines associated with the minor counters. To limit
the subsequent performance overhead, prior work [14] used a
counter cacheline with 64 minor counters, sized such that they
overflow and incur re-encryption overheads infrequently.

1Re-using counter values after a wrap-around is a security vulnerability, as an
XOR of two cipher-texts using the same OTP can leak plain-text information.

3) Data Integrity with Authentication Codes: Encrypting the
entire memory (e.g. AMD-SME [16]) still leaves it vulnerable
to undetected data-tampering by an adversary. To prevent
this, cryptographic signatures of cacheline contents called
message authentication codes (MACs) are stored in memory
per data cacheline. Prior designs use MACs generated by
cryptographically hashing2 data and encryption counter, using
a secret key (e.g. AES-GCM [14], Carter-Wegman [7]). On
every cacheline access, the memory controller fetches the stored
MAC and verifies it by recomputing the MAC using the data
cacheline and the counter, to ensure no tampering has occurred.

Recent work Synergy [10] avoids additional accesses for
MACs, by storing MAC in the extra chip available in an
ECC-DIMM organization, obtaining MAC and data in a single
memory access. Additionally, it is possible to avoid extra
accesses for both MAC and Error Correction Code (ECC) by
storing a 10-bit Single-Error-Correction code (SEC)3 with a
54-bit MAC4 in the extra-chip (a concurrent work [19] makes a
similar observation) – we use this design for all our evaluations.

4) Replay Attack Protection using Integrity-Trees: Memory
contents protected with MACs are still vulnerable to tampering
through replay attacks. For example, an adversary can replace
a tuple of {Data, MAC, Counter} in memory with older values
without detection. Integrity-trees [7], [13], [20] prevent replay
attacks using multiple levels of MACs in memory, with each
level ensuring the integrity of the level below. Each level is
smaller than the level below, with the root small enough to be
securely stored on-chip. We restrict our discussion to Bonsai-
style counter trees [7], [13], a type of integrity-trees using
counters, constructed with encryption counters as their base.

Major Ctr C32

16 ary 

MACC1 C2

Integrity Tree
Counters

Major Ctr C16 MACC1 C2 16 Minor Ctr x 24 bits

Hash

Hash

32 Minor Ctr x 12 bits

32 ary 

Major Ctr C64 MACC1 C2 64 Minor Ctr x 6 bits

64 ary 

Encryp!on
Counters

Level 2

Level 1

Level 0

Fig. 4. Counter-tree based integrity tree design like VAULT [1].

Counter-Trees use hashing algorithms that generate MACs
using integrity-tree counters. As shown in Figure 4, MACs
protecting the integrity of encryption counters are co-located
with the encryption counter cachelines (level-0) and generated
using counters from the parent (level-1). Similarly, an integrity-
tree counter cacheline (level-1) is hashed to produce a co-
located MAC using a higher-level counter (level-2). The number
of counters per cacheline-sized entry determines the arity, i.e.
the ratio by which the size of each level reduces and decides the
number of levels, which impacts the tree traversal overheads.

2Refer [10], [14] for more details regarding MAC implementation.
3Our analysis with FaultSim [17] shows system failure probability does not

change whether we use 10-bit SEC per 64-byte cacheline or 8-bit SEC per
8-byte word (as in ECC-DIMM) – as the probability of two single-bit errors
in the same cacheline is negligible compared to other failure modes [18]

4Forging a 56-bit MAC in SGX requires 2 million years [7], so forging a
54-bit MAC requires 500,000 years, that is much beyond system lifetime.



SGX uses an 8-ary counter tree with 8 counters per integrity
tree entry. On the other hand, VAULT [1] uses split counters
in the integrity-tree, with a 32-ary design at level-1 and 16-
ary design at level-2 and beyond. Furthermore, the tree is
constructed on an encryption counter base with a 64-ary split
counter design. This variable-arity design ensures negligible
frequency of counter overflows despite the higher write traffic
at upper levels of the tree, given that writes propagate up the
tree when lower level entries suffer dirty-evicts from on-chip
cache. It is also possible to uniformly use a 64-ary split counter
design across all the levels of the integrity-tree, to optimize
for integrity-tree size rather than counter overflow frequency.

B. Performance Problem in Secure Memories
During secure execution, every memory access for data

requires accessing the encryption counter. If the counter is not
available in the on-chip cache and is fetched from memory,
its integrity is verified by traversing the integrity-tree from the
leaf to the root. The traversal continues accessing tree entries
from memory until an entry is found securely cached on-chip.
These extra memory accesses cause a memory-traffic bloat,
that results in performance overhead during secure execution.
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Fig. 5. Impact of increasing arity of counters used for encryption and integrity-
tree. (a) Performance normalized to SC-64. (b) Memory traffic per data access.

Figure 5(a) compares the performance of secure execution as
the arity of the counters used for encryption and integrity-tree
changes across configurations. Each configuration is evaluated
with 16 GB memory and 128KB metadata cache, using memory
intensive workloads from SPEC2006 and GAP. All results are
normalized to SC-64 that uses 64-ary counters throughout.

There exists a performance gap of 40% between secure
execution with SC-64 and non-secure execution. To bridge this
gap, scaling the integrity tree arity appears promising, but it has
challenges. VAULT, a design using 64-ary encryption counters,
32-ary counters at level-1 of the integrity-tree and 16-ary at
higher levels has 6.4% slowdown compared to SC-64 that is
64-ary throughout. However, further increasing the arity to 128
with SC-128 hurts performance, causing 28% slowdown.

This slowdown is caused by the additional memory accesses
for fetching counters and handling counter overflows, as shown
in Figure 5(b). VAULT incurs 0.7 additional accesses per data
access for counters, while incurring negligible accesses due to
counter overflows. SC-64 reduces the additional accesses for
counters to 0.5 per data access, while incurring a modest 0.07

access per data access for handling counter overflows. While
SC-128 further reduces accesses for counters to 0.4 per data
access, it incurs a considerable penalty on account of counter
overflows – almost 1 additional access per data access.

Increasing the integrity tree arity provides the benefit of
fewer counter accesses. Higher arity trees are smaller in size,
where fewer levels require memory accesses because of poor
cacheability on-chip. For instance, VAULT incurs accesses for
tree levels 1 to 3, while SC-64 requires accesses only for levels
1 and 2, and SC-128 requires accesses to just level-1.

However, increasing arity also causes higher re-encryption
and re-hashing overheads. SC-64 and SC-128 incur more
frequent counter overflows due to 6-bit and 3-bit minor counters,
that can overflow in 64 and 8 writes respectively, whereas
VAULT uses larger (12-bit or 24-bit) counters that overflow
rarely. Furthermore, each overflow requires extra memory reads
and writes to re-encrypt data or re-hash child tree entries, with
the number of extra accesses being proportional to arity. SC-64
requires 64 reads and 64 writes per overflow, while SC-128
requires 128 reads and 128 writes per overflow. For SC-64,
these overheads are limited compared to a reduction in counter
accesses, resulting in a speedup compared to VAULT, but for
SC-128 they are significant enough to cause a slowdown.

C. Goal: Compact Integrity Trees with Low-Overheads
All existing designs statically and equally size the counters

within a cacheline. However, they are all limited to at most a
64-ary design, as uniformly smaller counters face the problem
of frequent counter overflows and considerable re-encryption
overheads. Fortunately, writes that are the root-cause of counter
overflows, only propagate up the tree until the level that is
completely resident in the on-chip cache. Studying the usage
patterns of counters below this level can enable non-uniform
counter organizations that are more tolerant to overflows. Thus,
we investigate counter organizations that are both high density
and overflow-tolerant, to get the benefit of compact integrity
trees without the re-encryption and re-hashing overheads.

III. MORPHABLE COUNTER DESIGN

First, we analyze the problem of overflows in split counters
and then explain our morphable counter design – how it incurs
fewer overflows despite providing more counters per cacheline.

A. Overflow Problem with Split Counters
It is impractical to pack more than 64 counters per cacheline

with split counters because small counters can overflow rapidly
resulting in frequent re-encryptions. However, this overhead
depends on the usage pattern of counters within a cacheline.

Figure 6 shows the “time to overflow”, i.e. number of writes
a counter-cacheline can tolerate before an overflow, for split
counter designs with 64 x 6-bit minor counters (SC-64) and
128 x 3-bit minor counters (SC-128). Time to overflow varies
as the fraction of counter-cacheline used changes (assuming
uniform writes to the counters used). For example, split counters
overflow rapidly if a small fraction of the counters in the
cacheline see a majority of the writes. While SC-64 overflows
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every 64 writes in the worst-case, SC-128 can overflow with
just 8 writes to the cacheline. Therefore, it is important to
address this scenario while designing overflow tolerant counters
building on the split counter design. In general, SC-128 design
tolerates 8x lesser writes before an overflow compared to SC-64,
because its counters are 3-bits smaller in size.

To better understand the application write patterns driving
these counter overflows, we analyze the counter values at the
time of overflow while using an SC-64 counter design for
encryption and integrity-tree. Figure 7 shows the histogram of
the “fraction of counter-cacheline used” when it encounters
an overflow, averaged across 28 memory intensive workloads
from SPEC2006 and GAP benchmark suites.
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Most of the overflows in SC-64 occur either when applica-
tions sparsely use few counters in a cacheline, or when they
use all the counters in the cacheline. For example, 27 out of 28
workloads we analyzed incurred more than 75% of overflows,
either when they used less than a quarter of the counters in a
cacheline, or when they used all the counters in a cacheline.

Sparse counter usage is common in level-1 counters, where
the counter values depend on the frequency of writes to a
physical page of data in memory. Because hot pages can be
interspersed in memory with cold pages, there is a sparse
utilization of counters within a cacheline at this level. On the
other hand, encryption counters are more prone to uniform
utilization especially in streaming applications, that uniformly
write to all cachelines within a write-heavy page. Optimizing
for these patterns of counter usage can help improve the write-
tolerance of split counters and enable a high-density counter
organization that is also tolerant to overflows.

B. Zero Counter Compression: For Sparse Counter Usage
We observe that when counters within a cacheline are used

sparsely, few counters seeing intense writes drive the overflows,
while many counters remain unused. Conventional counter
designs equally allot bits to all counters irrespective of their
usage. However, we observe that overflows may be reduced if
zero counters are compressed to make space for larger sized
non-zero counters. With this insight, we propose a Morphable
Counter representation using Zero Counter Compression (ZCC)
that enables utility-based sizing of counters.

1) Design: Figure 8 shows the counter cacheline organiza-
tion with morphable counters using ZCC. The 512-bit counter
cacheline is split into 4 fields: a 57-bit major counter, a 7-
bit format field (specifying ZCC or Uniform), a 384-bit field
storing the minor counters and a 64-bit MAC for the cacheline.

Major Counter Format (F) Minor Counters MAC

(57-bit) (7-bit) (384-bit) (64-bit)

F = Uniform 128 x 3-bit Ctrs

F = ZCC Bit-Vector Non-Zero Ctrs

(128-bit) (256-bit)

(a)

(b)

Ctr-Sz

(1-bit)(6-bit)

Fig. 8. Organization of Morphable Counter cacheline. Counters are represented
in (a) Zero Counter Compression or (b) Uniform formats.

In ZCC-format, minor counter size depends on the number of
non-zero counters. A 128-bit Bit-Vector tracks which counters
are non-zero and the rest of the 256-bits are equally distributed
only among the non-zero counters. The non-zero counter size
is stored in the 6-bit Ctr-Sz field. In uniform-format, all the
minor counters are uniformly sized as 128 x 3-bit counters.

ZCC permits large counter sizes when only a few counters in
a cacheline are used. For example, up to 16 non-zero counters
each counter gets 16-bits, up to 32 non-zero counters each gets
8-bits and so on (7-bits up to 36, 6-bits up to 42, 5-bits up to
51 and 4-bits up to 64). When more than 64 counters are used,
the design adopts the uniform format without the bit-vector,
allotting 3-bits for each of the 128 minor counters.

The counter value used for encryption or hash genera-
tion is obtained by adding the major and minor counter
(Counter = Ma jorCtr+MinorCtr). On an overflow, to avoid
re-using counter values, the major counter is incremented
by the value of the largest minor counter in the cacheline
(Ma jorCtr += (Largest MinorCtr+1)) and all minor coun-
ters are reset to 0. While the major counter grows at a faster
rate than in conventional split counter design, it is large enough
to never overflow in system lifetime, as shown in Section V.

2) Operation: Counter cachelines are encoded with ZCC
in both the on-chip cache and main-memory – decoding
is required to obtain the counter value for encryption and
decryption. Interpreting if a counter is zero only requires
indexing into the bit-vector, as the corresponding bit is set
to 0 for such counters. For a non-zero counter, the value can
be obtained as shown in Figure 9(a), using the counter-size
from the Ctr-Sz field and indexing into the Non-Zero Ctrs



field of the cacheline. As these are relatively simple operations
compared to a cryptographic operation like AES required for
encryption or decryption, decoding can be completed with
negligible impact on the latency of encryption or decryption.

(a) Decoding morphable counters in ZCC format (on counter read)

Read counter

cacheline

Determine 

counter size

Locate counter

 in cacheline

(b) Re-encoding counters into ZCC format (on a counter increment)

Increment 

counter

Update Ctr-Sz

(if changed)
Check for

overflows

Reorganize counters 

(if required)

Count 1s in bit-vector 

before current counter

Read 

Ctr-Sz field

Fig. 9. Decoding and re-encoding morphable counters in ZCC format.

On a counter increment, a check is performed to ensure
that it did not overflow. If the counter increment increased the
number of non-zero counters, there is a possibility of reduction
in the minor counter size. In this case, re-encoding the counters
to ZCC requires re-organizing the Non-Zero Ctrs field to reflect
the updated counter size as shown in Figure 9(b). However, as
counter re-organization is performed infrequently and only on
a write, its latency is not on the critical path of execution.
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Fig. 10. Benefit in ”time to overflow” with Morphable Counters using ZCC,
compared to split counters. ZCC tolerates a higher number of writes before
an overflow when less than 25% of counters in a cacheline are used.

3) Benefits: Figure 10 shows the number of writes before an
overflow for morphable counters with MorphCtr-128 compared
to SC-64. MorphCtr-128 has a higher “time to overflow” when
at most a quarter of the counters in a cacheline are used. This
is because when only a few counters in the cacheline are used,
ZCC provides large counters by distributing the available bits
among the non-zero counters. For example, when 32 or fewer
counters are used, each counter gets at least 8-bits. On the
other hand, SC-64 statically provisions 6 bits per minor counter.
However, when a majority of the counters in a cacheline are
used, MorphCtr-128 tolerates 8x lesser writes compared to
SC-64, because it only provisions 3-bits per counter.

To evaluate benefits with real applications, we compare
the overflows per million memory accesses for MorphCtr-128
against SC-64 and SC-128 configurations as shown in Figure 11.
On average, SC-128 incurs 7.4x higher overflows compared
to SC-64, whereas MorphCtr-128 incurs 1.4x fewer overflows
than SC-64 and 10.2x fewer overflows than SC-128.
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Fig. 11. Overflows per million memory accesses for SC-64, SC-128, and
MorphCtr-128 using ZCC, for workloads from SPEC2006 and GAP.

ZCC considerably reduces the overflows of the sparsely used
counters in the integrity-tree – therefore, MorphCtr-128 incurs
fewer overflows than SC-128 for all workloads. Moreover,
for workloads with inherently sparse data accesses (like mcf,
omnetpp, xalancbmk), ZCC encoding for MorphCtr-128 helps
reduce overflows of the encryption counters as well, resulting
in fewer overflows compared to SC-64 for these workloads. For
other workloads with streaming data accesses (like libquantum,
gcc, lbm) that use a large fraction of the encryption counter-
cacheline, ZCC is not as effective. This causes MorphCtr-128
to incur more overflows than SC-64 for streaming applications.

IV. MORPHCTR - HANDLING UNIFORM COUNTER USAGE

When a majority of the counters in a cacheline are used,
MorphCtr-128 uses 3-bits per counter. As a result, it tolerates 8x
fewer writes before an overflow, compared to SC-64 with 6-bit
counters. Fortunately, workloads with such counter usage have
uniform accesses (e.g. streaming workloads) and tend to use
all the counters in a cacheline, without any zero counters. For
such patterns, it is possible to avoid re-encryption overheads
on a minor counter overflow – by re-basing minor counters,
i.e. moving the major counter ahead by the smallest minor
counter and reducing all minor counters by that value.
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Fig. 12. Avoiding overflow and re-encryption with minor counter re-basing.
Existing design resets all minor counters, requiring re-encryptions (all effective
values changed); Re-basing only changes effective value of overflowing counter.

All existing designs incur re-encryption costs when a minor
counter overflows, as they reset all the minor counters to 0 while
incrementing the major counter. This changes the effective
counter value for all counters in the cacheline as shown in
Figure 12, requiring subsequent re-encryptions. However, if
all the minor counters are non-zero, it is possible to re-base
them, i.e. move the major counter ahead by the smallest minor
counter and reduce all the minor counters by that value. This
provides room for incrementing the previously overflowing
counter, without changing the effective counter values for the
other counters. Thus re-basing minor counters can avoid a
counter overflow and also the associated re-encryption costs.



Minor Counter Re-basing (MCR) as described, is applicable
to all existing counter designs up to 64 counters per cacheline.
However, with 128 counters per cacheline, we observe a
differing behavior among the two sets of 64 counters at the
encryption counter level, given that each set corresponds to a
different 4KB physical page. To support re-basing over two
separate sets of 64 counters, we propose a double-base format
for MCR in MorphCtr-128 – one base per set of 64 counters.5

MAC

(56-bit) (1-bit) (128-bit) (64-bit)

Minor Ctrs-1

(64 x 3-bits)
(b)

(a) F = ZCC Bit-Vector Non-Zero Ctrs

Major

Counter

Minor Ctrs-2

(64 x 3-bits)
Base-1 Base-2

(49-bit) (7-bit) (7-bit) (192-bit) (192-bit)

Major Counter

(256-bit)

MACF = MCR

(64-bit)(1-bit)

Ctr-Sz

(6-bit)

Fig. 13. Organization of morphable counter cacheline supporting (a) ZCC
and (b) MCR (Minor Counter Re-basing) formats.

1) Design: Figure 13(b) shows the organization of a
MorphCtr-128 cacheline in the MCR format. Each cacheline
stores two 7-bit bases and two sets of 64 x 3-bit minor
counters. The additional space required for the second base
comes from storing a smaller 49-bit major counter, compared
to a 56-bit major counter in ZCC format as shown in
Figure 13(a). The effective counter value is a 56-bit value
in both formats, i.e. (Ma jorCtr +MinorCtr) for ZCC, and
((Ma jorCtr kBase)+MinorCtr) for MCR.

2) Operation: When MorphCtr has more than 64 non-zero
counters per cacheline, the format switches from ZCC to MCR.
To ensure counter values are unchanged, initial values of Base-
1 and Base-2 in MCR are the same as the lower 7-bits of
MajorCtr in ZCC. In MCR, rebasing is attempted when a
minor counter at the maximum value needs to be incremented
– the base is moved forward by the smallest minor counter,
and all the counters are decreased by the same value. Now
the counter can be incremented without an overflow. If the
smallest minor counter is zero, then re-basing is not possible –
then all the counters in the set are reset to 0 and the base is
incremented (Base += (LargestMinorCtr+1)), accompanied
by 64 re-encryptions. In case either base overflows, then both
bases and all minor counters are reset to 0, the major counter
is incremented by two6 along with 128 re-encryptions, and the
format switches back to ZCC.

3) Benefits: Rebasing reduces overflows in addition to the
benefits obtained with ZCC, as shown in Figure 14. On average,
ZCC+Rebasing reduces overflows by 1.6x compared to SC-
64, while ZCC-only reduces by 1.4x. For many streaming
workloads (like gcc, lbm, libquantum), ZCC+Rebasing signifi-
cantly reduces overflows to a level similar as or below SC-64.
However, for some outliers (e.g. GemsFDTD), ZCC+Rebasing
incurs higher overflows as the counter usage pattern is neither
sparse nor uniform. While our scheme is sub-optimal for such
patterns, these patterns fortunately, occur rarely.

5For page sizes larger than 4KB (e.g. 8KB, 2MB etc.), a single-base design
(using major counter as the base) works as well as the double-base design.

6Ma jorCtr += 2 ensures that the effective counter value at the time of
simultaneous overflow of Base and MinorCtr is not re-used
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Fig. 14. Overflows per million memory accesses for SC-64 and MorphCtr-128
(ZCC-only and ZCC+Rebasing), for workloads from SPEC2006 and GAP.

V. SECURITY ANALYSIS

Ensuring no counter reuse: The security of encryption and
integrity-checks is retained with morphable counters, as we only
change the counter representation, without any modification
to the encryption or MAC algorithm. By ensuring that the
effective counter value is always forward-moving and never
repeated, morphable counters prevents counter re-use. While
the effective counter value can grow 2x faster than the minor
counter (due to Ma jorCtr += 2), it is sufficiently large (56
bits) that it will not overflow in system lifetime (30+ years
before overflow, with 1 counter increment per 100 CPU cycles).

Resilience to Denial of Service: Morphable counters
can tolerate 500+ writes before an overflow, when counters
are written uniformly as shown in Figure 10. However, a
pathological write pattern can cause an overflow in 67 writes,
by writing once to 52 counters out of 128 (reducing the counter
size to 4-bits), followed by 15 writes to a single counter. In
fact, the baseline split counter design is even more vulnerable,
as it can overflow every 64 writes. Such frequent overflows can
flood the memory system with accesses for re-encryptions and
MAC updates. However, other programs can be shielded from
any performance impact in this scenario with fairness-driven
memory scheduling policies [21], [22], [23] that can throttle
the overflow-handling accesses of the pathological application
and maintain serviceability of other applications.

Potential side-channels: Morphable counters do not leak
any information in addition to existing side-channels. While
overflow frequency can reveal information about memory
access patterns, this is available by monitoring address-bus or
plaintext counter-values even in baseline. Data-confidentiality
is further unaffected, as only counter-encoding is changed, with
counter-values in counter-mode encryption of data unchanged.

VI. EXPERIMENTAL METHODOLOGY

Simulation Framework: We use USIMM [24], a memory
system simulator for evaluating system performance and
power. USIMM enforces the JEDEC DDR3 protocol and
uses power parameters from industrial 4Gb x8-DRAM chips
to accurately model memory power. For our simulations,
we warm-up the counters for 25 billion instructions7 before

7We verify that counter overflows have stabilized by comparing the counter
overflow rate with simulations for 50 billion instructions.



measuring performance over 5 billion instructions. We evaluate
performance by comparing Instructions Per Cycle (IPC) for
our proposal against baseline design. We also characterize the
bloat in memory traffic due to secure execution by evaluating
the ratio of total memory accesses to data accesses.

TABLE I
BASELINE SYSTEM CONFIGURATION

Number of cores 4
Processor clock speed 3.2GHz
Processor ROB size 192

Processor fetch / retire width 4
Last Level Cache (Shared) 8MB, 8-Way, 64B lines
Metadata Cache (Shared) 128KB, 8-Way, 64B lines

Memory size 16 GB
Memory bus speed 800MHz

Banks x Ranks x Channels 8 x 2 x 2
Rows per bank 64K

Columns (cache lines) per row 128
OS Page Allocation Policy Random

Secure memory model: Our baseline (SC-64) uses split-
counters [14] with a 64-ary design for both encryption and
integrity tree, resulting in a 64-ary integrity-tree. We also
compare with VAULT [1], that has a variable arity of counters
– 64-ary split counters for encryption, 32-ary for level-1 of the
integrity tree and 16-ary for upper levels. Our proposal uses
128-ary MorphCtr-128 (ZCC + Rebasing), henceforth referred
as just MorphCtr-128, for both encryption and integrity-tree.
All configurations assume a Synergy [10] configuration, without
any overhead for accessing MACs. Similar to recent works [1],
[9], we use a 128KB dedicated metadata cache shared across
4 cores, for caching counters (encryption and integrity-tree).

TABLE II
(I) MEMORY ACCESSES PER KILO INSTRUCTIONS (PKI) PER CORE,

(II) MEMORY FOOTPRINT FOR 4 CORES.
Suite Workload Read-PKI Write-PKI Footprint (GB)

SPEC2006

mcf 69 2 7.5
omnetpp 18 9 0.6
xalancbmk 4 3 1.1
GemsFDTD 19 8 3.1
milc 19 7 2.3
soplex 28 6 1.0
bzip2 5 1.4 1.2
zeusmp 5 1.9 1.9
sphinx 14 1.4 0.1
leslie3d 16 5 0.3
libquantum 24 10 0.1
gcc 48 53 0.7
lbm 28 21 1.6
wrf 4 2 1.6
cactusADM 5 1.5 1.6
dealII 1.7 0.5 0.2

GAP

bc-twit 61 24 9.3
pr-twit 94 4 11.2
cc-twit 89 7 7.0
bc-web 13 7 12.0
pr-web 16 3 12.2
cc-web 9 1.5 7.8

Workloads: We evaluate our design using workloads from
SPEC2006 [25] and GAP [26] benchmark suites. As our
proposal optimizes memory accesses, we focus on memory-
intensive workloads from SPEC2006 (>1 memory access per
1000 instructions). From GAP, we use 6 important workloads
(Page Rank, Connected Components, Betweenness Centrality
kernels with Twitter and Web data-sets). We run the benchmarks

in rate mode, i.e. each of the four cores running the same copy
of the benchmark. Additionally, we evaluate 6 mixed workloads
obtained with a random combination of benchmarks.

VII. RESULTS & DISCUSSION

A. Impact on Performance
Figure 15 compares the performance of MorphCtr-128 (using

ZCC and Rebasing) with SC-64 and VAULT, all normalized
to SC-64 (baseline). While VAULT suffers slowdown of 6.4%,
MorphCtr-128 achieves a speedup of 6.3%, compared to SC-64.

Performance depends on the size of the integrity-tree in
each configuration. A more compact integrity-tree has better
cacheability of entries on-chip, resulting in lower overheads due
to integrity-tree traversal and better performance. The baseline
SC-64 using 64-ary counters has an integrity-tree that is 4 MB
in size. On the other hand, VAULT requires a larger 8.5 MB
integrity-tree because it uses lower arity (16 or 32-ary) split
counters in the integrity-tree, while using 64-ary split counters
for encryption. As a result, VAULT suffers slowdown of 6.4%.

In comparison, MorphCtr-128 uses 128-ary counters, that
reduce the footprint of encryption counters by 2x. Consequently,
the area on which the integrity tree is constructed is smaller
by 2x. Additionally, each level of the tree is smaller by 2x
as the tree-arity is double that of SC-64. This reduces the
tree size additionally by 2x. In combination, this results in
an integrity-tree size of 1 MB, that is 4x smaller in size than
SC-64. This is the main driver behind the speedup of 6.3%.

The benefits of MorphCtr-128 are more pronounced for
workloads like mcf, omnetpp, and xalancbmk with high memory
traffic and random data accesses. These workloads incur
considerable memory traffic for integrity-tree traversal in the
baseline because there is limited reuse of the cached tree-
entries without temporal locality in data accesses. In such
scenarios, the compact tree design with MorphCtr-128 provides
considerable speedup by reducing the number of levels to be
traversed. Similar speedup is also seen with graph workloads
from GAP with the Twitter dataset (bc-twit, pr-twit, cc-twit),
which perform random accesses across large working sets.

For workloads with high spatial locality like libquantum,
gcc etc., MorphCtr-128 performs as good as the baseline. This
is because these workloads have limited integrity-tree traversal
with high spatial re-use of cached counters. Similarly, there is
no impact on performance for non-memory intensive workloads,
with infrequent memory accesses and integrity-tree traversal.

B. Analyzing memory traffic bloat
We analyze the memory traffic bloat due to the accesses

for the counters and handling their overflows, which is the
main driver of performance overheads. Figure 16 shows the
memory traffic bloat (memory accesses per data access) for
VAULT, SC-64, and MorphCtr-128. The memory traffic is split
into accesses for (1) program-related data, accesses to multiple
levels of counters, i.e. (2) Ctr Encr used for encryption, (3-5)
Ctr 1, Ctr 2, Ctr 3 & Up (different levels of the integrity tree)
and (6) Overflow handling – memory accesses for re-encryption
of data and updates to MACs on counter overflows.
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MorphCtr-128 provides the benefit of fewer memory accesses
for metadata, requiring 0.5 extra accesses per data access
compared to SC-64 that needs 0.6 accesses. This reduction is
due to the compact integrity-tree in MorphCtr-128, that is one
level shorter and better cacheable on-chip compared to SC-
64. While SC-64 require 0.5 counter accesses per data access
(accessing Ctr Encr, Ctr 1 and Ctr 2), MorphCtr-128 only
requires 0.4 accesses (accessing only Ctr Encr and Ctr 1).

Additionally, overflowing counters result in extra memory
accesses for re-encrypting data and updating MACs in child
tree-entries. MorphCtr-128 incurs 0.07 accesses per data access
for handling overflows, similar to SC-64 (0.06 accesses), despite
having 2x arity and consequently, 2x memory accesses required
per overflow. This is because of a reduction in the frequency
of counter overflows by 1.6x in MorphCtr-128 compared to
SC-64, due to a combination of ZCC and Counter-Rebasing.

Random access workloads (like mcf and omnetpp) see
benefits of both higher arity tree of MorphCtr-128 and higher
overflow tolerance of ZCC, resulting in a reduction in accesses
for counters and overflow handling. On the other hand, uniform
access workloads (like libquantum and gcc) have limited
potential for reduction in counter accesses and do not benefit
from higher arity of MorphCtr-128. However, they do not suffer
the overflow handling overheads of smaller counters either, as
Counter Rebasing ensures low overflow frequency.

Only GemsFDTD suffers a slowdown (2%) with MorphCtr-
128, as the reduction in counter memory accesses is offset by a
larger increase in accesses for handling overflows. Here, both
ZCC and Rebasing are unable to limit the overflow frequency,
as the counter usage pattern is neither sparse nor uniform.

C. Understanding Slowdown of VAULT
As shown in Figure 15, VAULT suffers a slowdown of 6.4%

compared to our baseline SC-64. This is because of 9.7%
higher memory traffic, as shown in Figure 16. VAULT uses
conservative low-arity split counters in the integrity tree (32-ary
counters for level-1, 16-ary for upper levels), that result in
a large 8.5 MB tree with 6 levels. While these counters are
sized such that the overflow handling overheads are negligible,
the resulting integrity-tree has many levels requiring multiple
accesses during traversal. Thus, VAULT requires an additional
0.74 accesses per data access for counters, while only incurring
0.01 accesses per data accesses for handling overflows. On
the other hand, SC-64 incurs lesser memory traffic by trading
off a slight increase in accesses for overflow handling (0.07
accesses per data access) for much fewer counter accesses (0.5
accesses per data access).

D. Understanding Overflow Tolerance of MorphCtr-128
Using a high-arity counter design in the integrity-tree may

seem counter-intuitive, given how these entries protect a large
span of memory. However, the ZCC format in MorphCtr-128
is able to provide the illusion of larger counters despite a high-
arity organization, by exploiting the fact that less than 25%
of the counters in these integrity-tree entries are actually used.
Furthermore, the upper levels of the tree do not have frequent
counter overflows, as writes do to propagate beyond the tree-
level that is completely resident in cache. When streaming
access patterns cause ZCC to fail, MCR format leverages
the uniform counter usage that is common with these access
patterns to avoid overflows in MorphCtr-128.



E. Impact on Height of the Integrity-Tree

Figure 17 shows the number of levels in the integrity-tree,
using MorphCtr-128 compared with VAULT and SC-64, for
a system with 16GB memory. VAULT has counters with
variable arity, using 64-ary counters for encryption, 32-ary
counters at level-1 of the integrity-tree and 16-ary counters
at higher levels. As a result, it has a large integrity tree with
6 levels. With higher arity counters, the number of levels
in the integrity-tree decreases, thus reducing the worst-case
overhead of integrity-tree traversal. For example, SC-64 (64-ary
throughout) has 4 levels, whereas MorphCtr-128 (128-ary) only
has 3 levels. Additionally, both 64-ary and 128-ary designs
have smaller footprints at each level of the tree, resulting in
better cacheability of tree-entries and fewer memory accesses
for integrity-tree traversal on average.

Encryption
Counters
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26 212 218 224 230 26 212 218 224 230
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Tree Level 1
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Fig. 17. Reduction in number of integrity tree levels as arity increases. VAULT
a variable-arity tree (16 to 32-ary) has 6 levels, SC-64 (64-ary) has 4 levels,
MorphCtr-128 (128-ary) only has 3 levels.

F. Impact on Storage Overheads

The higher arity design of MorphCtr-128 reduces the overall
storage overheads for encryption counters and integrity-tree
compared to SC-64, as shown in Table III. SC-64 with a 64-
ary design throughout, incurs 1.6% storage overhead for its
encryption counters (1/64 of data footprint) and 0.025% for the
integrity-tree (approximately 1/64 of encryption counter foot-
print). As MorphCtr-128 provides a 128-ary design, it requires
2x lesser storage, incurring 0.8% overhead for the encryption
counters. In addition, the integrity-tree with MorphCtr-128
is 4x smaller, because of multiplicative benefits of smaller
encryption counter base and higher arity in the integrity-tree.
In comparison, VAULT has a higher integrity-tree overhead
(8.5x larger than MorphCtr) due to its conservative integrity-
tree arity, whereas its encryption counter overhead is similar to
SC-64. Commercial-SGX has much higher storage overheads
in comparison to these designs, because of its 8-ary counter
design for both encryption and integrity-tree counters.

TABLE III
STORAGE OVERHEADS FOR 16GB MEMORY.

Configuration Storage Overheads
Encryption Counters Integrity-Tree

Commercial-SGX 2 GB (12.5%) 292 MB (1.8%)
VAULT 256 MB (1.6%) 8.5 MB (0.05%)
SC-64 256 MB (1.6%) 4 MB (0.025%)
MorphCtr-128 128 MB (0.8%) 1 MB (0.006%)

G. Impact on System Power and Energy
MorphCtr reduces system energy, incurring fewer memory

accesses that consume energy. Figure 18 shows the power,
execution time, energy, and Energy-Delay Product (EDP).
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Fig. 18. Power, Execution Time, Energy and EDP for VAULT, SC-64 and
MorphCtr-128, normalized to SC-64.

MorphCtr-128 reduces execution time by 6% compared to
SC-64. However, it incurs 4% higher power consumption as it
performs the same work in a shorter time. Despite the increased
power, it provides energy savings of 2.7% due to the reduced
execution time and improves the system energy-delay product
(EDP), which is a product of energy and execution time, by
8.8%. On the other hand, VAULT suffers from 3.2% higher
energy and 10.5% higher EDP compared to SC-64.

H. Sensitivity to metadata cache size
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Fig. 19. Performance of SC-64 and MorphCtr-128 as metadata cache varies
from 64KB to 256KB, normalized to SC-64 with 128KB metadata cache.

Figure 19 shows speedup with MorphCtr-128 vs SC-64, as
the metadata cache size varies. Commercial systems design the
metadata cache as a part of the memory controller [7], making
a large metadata cache difficult due to area constraints. With
smaller metadata caches, there is a larger memory access bloat
for counters – hence MorphCtr-128 provides higher speedup
as the cache size decreases. Thus, MorphCtr-128 provides a
speedup of 3.3% with 256KB cache, 6.3% with 128KB cache
and 11% with 64KB cache. In fact, MorphCtr requires half the
metadata cache, to provide equivalent performance as SC-64.

I. Sensitivity to MAC organization
For data integrity, secure memories store and access MACs of

data cachelines. In this paper, we assume a MAC organization
like Synergy [10] that stores In-Line MACs and provides MAC
in the same access as data. However, an unoptimized design
could store MACs separately (Separate MACs) like other prior
works [7], incurring an extra memory access for MAC on each
data access. Figure 20 compares the performance of SC-64
and MorphCtr-128 using Separate MACs and In-Line MACs
(i.e. Synergy), all normalized to SC-64 with In-Line MACs.
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Fig. 20. Performance of SC-64 and MorphCtr-128 for Separate-MACs and
In-Line MACs configurations, normalized to SC-64 with In-Line MACs.

In Separate MACs configuration, MACs cause significant
memory access bloat in addition to counters. Therefore, both
SC-64 and MorphCtr-128 suffer slowdown of 29% compared
to similar designs with In-Line MACs. As MorphCtr-128 only
reduces the memory traffic bloat due to counters compared
to SC-64, it provides a smaller speedup of 4.7% in Separate
MACs configuration, in contrast to speedup of 6.3% in In-
Line MACs configuration. Other proposals optimizing MAC
accesses [1], [11], [12] would see speedups in this range.

VIII. RELATED WORK

To our knowledge, this is the first work proposing compact
representations for encryption and integrity-tree counters,
to reduce overheads of integrity-tree traversal and counter
overflows. A concurrent work [19] proposes delta-encoding
for encryption counters, but only in the context of reducing
overflows. Prior works have explored alternate encoding of data
(compression) in the memory-system and optimizing integrity-
tree traversal in secure memories – we discuss these below.

A. Compressed memory systems
1) Compressed caches and main-memory: Prior works have

exploited data patterns, to propose compression for caches [27],
[28], [29], [30], [31], main-memory [32], [33], [34], [35], [36],
[37] and even 3D-DRAM [38], [39] – to unlock additional
storage, bandwidth or energy savings.

Our work does not depend on data values and hence is
orthogonal to all of these prior works. Instead, we propose
alternate representations for counters, whose values depend on
write patterns of data. In fact, our proposal works even for
an application writing random data values to its working set.
Furthermore, compression of data in cache or main-memory
may be used along with our proposal to enjoy additive benefits.

2) Low-latency compression algorithms: FPC [40] uses a
dictionary-based approach for compressing small values in
32-bit words. DZC [41] represents zero value cachelines with
a single-bit, to avoid expending energy for reading all the bits.
BDI [42] represents the cacheline as a base value and an array
of deltas, exploiting low-dynamic range in the data values.
BPC [43] uses a bit-plane transformation on 32-bit words to
improve the compression ratio with other schemes.

In a similar spirit, we use counter encoding that exploits
sparse or uniform patterns in counter values. However, while
prior proposals aim to reduce space occupied by data, we store
larger counters in the same space to avoid overflows.

B. Integrity Verification in Secure Memories
1) Alternate integrity-tree designs: All counter based trees

like TEC-Tree [44], Parallelizable Authentication Trees [45],
SGX Tree [7] and VAULT [1] have tree arity dependent on the
number of counters or nonces per tree entry. Using morphable
counters to obtain more counters per entry can enable higher
tree-arity with minimal overheads for these designs.

On the other hand, MAC-Trees or Merkle Trees [13] that are
constructed as a tree of MACs are limited to 8-ary irrespective
of the counter design used. This is because the arity depends on
the number of MACs per tree-entry and only 8 x 64 bit-MACs
can fit in a cacheline sized entry. Smaller 32-bit MACs that
provide a higher arity, do not provide sufficient security.

2) Proposals optimizing integrity-tree traversal: Prior works
[11], [12], [46] have proposed caching integrity-tree entries
in the last-level cache along with data or using metadata
type-aware replacement policies for efficient caching. These
proposals are orthogonal to our work as they do not address the
size of the integrity-tree which we focus on. Combining these
with our compact integrity tree design can ensure low-overhead
integrity-tree traversal as memories scale to larger sizes.

Alternate designs push integrity-tree traversal off the critical
path, with counter value prediction [47] or speculative usage
of unverified counters (e.g. PoisonIvy [9], ASE [48]). However,
they only address the latency overheads of integrity-verification
and still incur the bandwidth overheads. Whereas, our design
also reduces the bandwidth overheads with a compact integrity-
tree and can be combined with these proposals.

Recent smart-memory solutions [49], [50] provide low-
overhead replay-attack protection, but require custom memory
modules. In contrast, our proposal is compatible with commer-
cial approaches for securing commodity DRAM like SGX.

IX. CONCLUSION

In this era of cloud computing, remote data-centers store
sensitive information like credit card details, bitcoin keys, etc.
in main memory. While it is critical to protect such data in
memory from adversaries, it is also important to ensure that the
security mechanisms have low overhead to facilitate adoption.

In this paper, we enabled a secure memory design with
morphable counters, a compact 128-ary counter organization
that requires lesser storage compared to all prior works that
are limited to at most 64-ary. Using morphable counters, we
designed a compact integrity-tree design that is more amenable
to caching, improving performance by 6.3% compared to our
64-ary baseline and by 13.5% compared to VAULT. These
benefits come without any extra storage or reduction in security
and are derived from re-designing the counter organization that
reduces the storage overhead of secure memory.

X. ACKNOWLEDGMENT

We thank Roberto Avanzi and Milos Prulovic for their
technical inputs, Sanjay Kariyappa and Poulami Das for helpful
discussions, and the anonymous reviewers of ISCA-2018 and
MICRO-2018 for their valuable feedback that helped improve
this paper. This work was supported by NSF Grant 1526798.



REFERENCES

[1] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing
Paging Overheads in SGX with Efficient Integrity Verification Structures,”
in ASPLOS, 2018.

[2] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we
remember: cold-boot attacks on encryption keys,” CACM, 2009.

[3] S. F. Yitbarek, M. T. Aga, R. Das, and T. Austin, “Cold Boot Attacks are
Still Hot: Security Analysis of Memory Scramblers in Modern Processors,”
in HPCA, 2017.

[4] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ISCA, 2017.

[5] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” Black Hat, 2015.

[6] M. Becher, M. Dornseif, and C. N. Klein, “FireWire: all your memory
are belong to us,” Proceedings of CanSecWest, 2005.

[7] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose
Processors,” IACR Cryptology ePrint Archive, 2016.

[8] V. Costan and S. Devadas, “Intel SGX Explained.” IACR Cryptology
ePrint Archive, 2016.

[9] T. S. Lehman, A. D. Hilton, and B. C. Lee, “PoisonIvy: Safe speculation
for secure memory,” in MICRO, 2016.

[10] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K. Qureshi,
“SYNERGY: Rethinking Secure-Memory Design for Error-Correcting
Memories,” in HPCA, 2018.

[11] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in HPCA,
2003.

[12] J. Lee, T. Kim, and J. Huh, “Reducing the Memory Bandwidth Overheads
of Hardware Security Support for Multi-Core Processors,” IEEE Trans.
Comput, 2016.

[13] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using Address
Independent Seed Encryption and Bonsai Merkle Trees to Make Secure
Processors OS- and Performance-Friendly,” in MICRO, 2007.

[14] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving Cost, Performance, and Security of Memory Encryption
and Authentication,” in ISCA, 2006.

[15] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, “Efficient
Memory Integrity Verification and Encryption for Secure Processors,” in
MICRO, 2003.

[16] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,” White
paper, 2016. [Online]. Available: https://developer.amd.com/wordpress/
media/2013/12/AMD Memory Encryption Whitepaper v7-Public.pdf

[17] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “FaultSim: A Fast,
Configurable Memory-Reliability Simulator for Conventional and 3D-
Stacked Systems,” in ACM-TACO, 2015.

[18] V. Sridharan and D. Liberty, “A study of DRAM failures in the field,”
in SC 2012.

[19] S. F. Yitbarek and T. Austin, “Reducing the overhead of authenticated
memory encryption using delta encoding and ECC memory,” in DAC,
2018.

[20] R. C. Merkle, “Protocols for Public Key Cryptosystems,” in S&P
(Oakland), 1980.

[21] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,” in MICRO, 2010.

[22] T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of
memory service in multi-core systems,” in USENIX Security, 2007.

[23] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via source
throttling: a configurable and high-performance fairness substrate for
multi-core memory systems,” in ACM Sigplan Notices, vol. 45, no. 3,
2010.

[24] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,
A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “Usimm: the utah
simulated memory module,” University of Utah, Tech. Rep, 2012.

[25] “SPEC CPU2006 Benchmark Suite,” in Standard Performance Evaluation
Corporation. [Online]. Available: http://www.spec.org/cpu2006/
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