
Hardware Support for Low-Cost Memory Safety

Rick Boivie1, Gururaj Saileshwar1*, Tong Chen,
Benjamin Segal, Alper Buyuktosunoglu

IBM Thomas J. Watson Research Center
Yorktown Heights, New York, USA

1 Equal Contribution
*Gururaj Saileshwar is currently affiliated with Georgia Tech

DSN 2021
The 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Taipei, Taiwan, June 21-24, 2021

1

Executive Summary
• Problem: Memory-Safety bugs like buffer-overflow & use-after-free are a serious problem

and have been at the root of many security problems for more than 3 decades
• E.g. The Morris Worm (1988), Buffer Overflow Based Code Injection, HeartBleed, Return-Oriented

Programming (ROP), Spectre … -- and are at the root of ~70% of CVEs

• Existing solutions for enforcing memory safety have poor coverage, or high performance-
overhead, or require disruptive changes

• Our Solution: A HW/SW co-design for precise bounds-checking
• that is minimally-invasive

• requires no changes to source-code
• and no changes to binary-layout (i.e., retains compatibility with existing libraries)

• with minimal performance impact (<2% overhead)

• Some Results:
• Our design detected all the vulnerabilities and prevented all the attacks in the ‘How2Heap’ Exploit Suite
• Detected 87 memory-safety bugs in glibc and in the SPEC-CPU 2017 benchmark programs that, to our

knowledge, had not been previously detected
• Our design can detect & prevent bugs in unmodified/un-instrumented shared library code 2

Problem: Memory-Safety Bugs in C/C++ Programs

Memory Safety Bugs in C/C++
Root cause of ~70% CVEs in Production-Software

arr = (int*) malloc(10 *
sizeof(int));

int func(int offset) {

//offset=11 (Out of bounds)
y = arr[offset];

free(arr);
//offset=9 (Use-After-Free)
y = arr[offset];

}

Source: Microsoft, Slides from SSTIC2020

3

• Memory-safety bugs are the root cause of ~70% of the CVEs in Microsoft’s Production S/W
• 50% of the CVEs are related to Heap Objects
• A Google study showed that 60% of memory-safety errors in Google S/W were Heap related

Problem: Memory-Safety Bugs in C/C++ Programs

Memory Safety Bugs in C/C++
Root cause of ~70% CVEs in Production-Software

arr = (int*) malloc(10 *
sizeof(int));

int func(int offset) {

//offset=11 (Out of bounds)
y = arr[offset];

free(arr);
//offset=9 (Use-After-Free)
y = arr[offset];

}

Source: Microsoft, Slides from SSTIC2020

4

• Memory-safety bugs are the root cause of ~70% of the CVEs in Microsoft’s Production S/W
• 50% of the CVEs are related to Heap Objects
• A Google study showed that 60% of memory-safety errors in Google S/W were Heap related

• Our initial focus is Heap-related errors (50% of CVEs)
• But our approach can also be used to protect against memory-safety errors

for Stack and Global Objects as well

Protecting Against Buffer-Overflow Based Attacks
• Protecting against some buffer-overflow based attacks

• Stack Canaries
• Data Execution Protection (W XOR X memory pages)
• Address Space Layout Randomization (ASLR)
• Shadow Stacks & other mechanisms for protecting “control flow integrity”

• These address some specific attacks but don’t prevent out-of-bounds references

• Eliminating out-of-bounds references
• Intel MPX. Uses extra instructions

• to keep a mapping from each pointer to its bound information
• to check bounds information on loads and stores

• Oracle Silicon Secured Memory
• “Colors” data in memory and prevents access by pointers of ”the wrong color”

• Requires coloring and re-coloring of memory
• Only supports a limited number of colors
• Granularity of protection is a cache-line

5

6

Other Mechanisms to Detect/Prevent Memory Safety Bugs

Prior Solutions Coverage Performance
Overheads Level of Invasiveness

Google’s Address
Sanitizer

(industry standard SW tool)

Only Detects small
Overflows

High (70%) Recompilation of
Source-Code

CHERI [ISCA-2014, S&P-
2015]

(HW/SW framework from
academia + SRI)

Principled Bounds-
Checking

Medium (20-30%)
(leverages HW-caching)

Changes to
Binary Layout

Prior Solutions Coverage Performance
Overheads Level of Invasiveness

Google’s Address
Sanitizer

(industry standard SW tool)

Only Detects small
errors

High (70%) No Changes to Source-
Code / Binary Layout

CHERI [ISCA-2014, S&P-
2015]

(HW/SW framework from
academia + SRI)

Precise Bounds
Protection

Medium (20-30%)
(leverages HW-caching)

Changes to
Binary Layout

Our H/W Support for
Low-Cost Memory

Safety

Precise Bounds
Protection

Low Low

High-Level Idea: HW-assisted Bounds-Checking
on Loads and Stores using Pointers

64-bit Pointer

Initialized by
malloc

Object Allocation Pointer-Dereference

?

Bounds Table

Out-Of-
Bounds?

After Object Free

Bounds Table

?

Use-
After-Free

Invalid

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex64-bit Pointer

Initialized by
malloc

Object Allocation Pointer-Dereference

?

Bounds Table

Out-Of-
Bounds?

After Object Free

Bounds Table

?

Use-
After-Free

Invalid

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

Re-Use the Top-Bits of the Pointer to Store Metadata;
Enforce Bounds-Checks Transparently in Hardware

Can be Freely Dereferenced
without any Checks In-

Bounds?

yes

Dereferenced

7

Formalizing the Bounds-Checking for Heap-Objects

Pointer initialized
using a malloc

Pointer Dereference
during Load/Store

Object deleted
using free(ptr)

malloc allocates BIEntry (base,size) for object
& embeds Index to BIEntry in top-bits of Ptr

Hardware performs bounds-checks
(using Index in top-bits of Ptr)

free checks BIEntry (ensures free is valid)
& invalidates BIEntry (prevents use of dangling ptr)

Derived
Pointer
(Index flows)

C/C++
Program

Shared Library with
malloc/free hooks

for BITable management

Hardware inserts
bounds-checks
for loads & stores

Compile-Time Run-Time

Fortified
Binary

Run

Link
LLVM

Instrumentation
to initialize hooks

(a) Life-cycle of a Pointer in HeapCheck (b) Software and Hardware support required

64-bit Pointer

Initialized by
malloc

Object Allocation Pointer-Dereference

?

Bounds Table

Out-Of-
Bounds?

After Object Free

Bounds Table

?

Use-
After-Free

Invalid

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex64-bit Pointer

Initialized by
malloc

Object Allocation Pointer-Dereference

?

Bounds Table

Out-Of-
Bounds?

After Object Free

Bounds Table

?

Use-
After-Free

Invalid

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex64-bit Pointer

Initialized by
malloc

Object Allocation Pointer-Dereference

?

Bounds Table

Out-Of-
Bounds?

After Object Free

Bounds Table

?

Use-
After-Free

Invalid

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex1
1

2

23

3

Life-Cycle of a Heap-Object Pointer

BIEntry

8

High-Level Idea: HW-assisted Bounds-Checking
on Loads and Stores using Pointers

64-bit Pointer

Initialized by
malloc

Object Allocation Pointer-Dereference

?

Bounds Table

Out-Of-
Bounds?

After Object Free

Bounds Table

?

Use-
After-Free

Invalid

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex64-bit Pointer

Initialized by
malloc

Object Allocation Pointer-Dereference

?

Bounds Table

Out-Of-
Bounds?

After Object Free

Bounds Table

?

Use-
After-Free

Invalid

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

Re-Use the Top-Bits of the Pointer to Store Metadata;
Enforce Bounds-Checks Transparently in Hardware

Can be Freely Dereferenced
without any Checks In-

Bounds?

yes

Dereferenced

9

Minimal performance impact since:
• Bounds information flows “automatically”

without extra instructions when a pointer is
assigned to another, passed in a function call
or used to compute another address in array
indexing or pointer arithmetic, and

• Since all the addresses associated with a given
buffer have the same “index”, the bounds
information for an address is often available in
an on-chip “Bounds Information” cache

High-Level Idea: HW-assisted Bounds-Checking
on Loads and Stores using Pointers

64-bit Pointer

Initialized by
malloc

Object Allocation Pointer-Dereference

?

Bounds Table

Out-Of-
Bounds?

After Object Free

Bounds Table

?

Use-
After-Free

Invalid

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex64-bit Pointer

Initialized by
malloc

Object Allocation Pointer-Dereference

?

Bounds Table

Out-Of-
Bounds?

After Object Free

Bounds Table

?

Use-
After-Free

Invalid

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

48-bit Ptr-ValIndex

Re-Use the Top-Bits of the Pointer to Store Metadata;
Enforce Bounds-Checks Transparently in Hardware

Can be Freely Dereferenced
without any Checks In-

Bounds?

yes

Dereferenced

10

Minimal performance impact since:
• Bounds information flows “automatically”

without extra instructions when a pointer is
assigned to another, passed in a function call
or used to compute another address in array
indexing or pointer arithmetic, and

• Since all the addresses associated with a given
buffer have the same “index”, the bounds
information for an address is often available in
an on-chip “Bounds Information” cache

while (p++){
…

}

For (i=0; i<…; i++){
a[i] = …

}

All the values of p in the code below
“automatically” have the right bounds
information -- which is usually
available in the on-chip BI cache.

Similarly for all the addresses a[i]

Software and Hardware Support

C/C++
Program

Shared Library
Overloading malloc/free
for managing Bounds-Table

LLVM Instrumentation
to mmap() Bounds-Table in

the program's VA-space
Link

Fortified
Binary

Compile-Time Run-Time

Simulated in
Gem5

Minimally invasive – Shared-library that needs to
be linked

Precise Enforcement of Exact Object Bounds
(wherever pointer is passed, even shared-libraries)

Low-Overhead Checks
(If Bounds Hits in Bounds-
Cache, No Slowdown)

Binary

CPU

L1-Cache

L2-Cache

DRAM

8KB
Bounds
Cache

DataBounds

11

Security Results (1): Detection of Heap-Based Memory Safety Bugs

• How2Heap Exploit Suite Consists of 25 Heap Exploits
• Some exploits developed for CTF (Capture-the-Flag) competitions

• Our design was able to detect the Bugs in all 25 programs and raise an exception
to terminate the program before the objective of the exploit could be achieved
• Out-Of-Bounds Accesses (load/store access falls outside BIEntry bounds) (8 exploits)
• Use-After-Free (invalid bounds read from BIEntry) (10 exploits)
• Invalid-Free (free called with ptr-value not matching BIEntry ptr-value)
• Double-Free (free called for pointer whose BIEntry has invalid bounds)

12

7 exploits

Security Results (2) – Detected Several (Previously Undetected)
Weaknesses in SPEC CPU-2017 + GLIBC-v2.27

• 87 lines of code with out-of-bounds accesses
• In Glibc-v2.27 functions and in some SPEC-CPU2017 functions compiled with O3 flag
• SPEC-CPU2017 out-of-bounds go away when compiled with O0 compilation flag

• All of these memory safety errors were due to aggressive use of SIMD instructions
(e.g., 16B load near the boundary of an object in strlen)

13

Unlike some other schemes, e.g., Address
Sanitizer, our design can detect and prevent
bugs in unmodified / un-instrumented
libraries like the string functions in glibc

Object Dump of libc.a for strlen function
Several 16B loads done with pcmpeqb (to check ‘\0’)

before actual conditional check executed with test

Security Results (2) – Example Out-Of-Bounds access in strlen with pcmpeqb

Assembly in libc
(branch after each load)

14

15

Performance Impact of Software (for Bounds Table Management)

On average, performance impact of Bounds Table Management is 0.5%

16

Performance Impact of Hardware (for Bounds Checks on load & store instructions)

On average, performance impact of Bounds Checking on loads and stores is 1.0%

Summary

• Memory-Safety bugs like buffer-overflow & use-after-free are a serious problem and have
been at the root of many security problems for more than 3 decades

• Existing solutions for enforcing memory safety have poor coverage, or high performance-
overhead, or require disruptive changes

• Our HW/SW co-design for precise bounds-checking
• is minimally-invasive

• requires no changes to source-code
• and no changes to binary-layout (i.e., retains compatibility with existing libraries)

• with minimal performance impact (<2% overhead)

• Our design is effective
• Our design detected all the vulnerabilities and prevented all the attacks in the ‘How2Heap’ Exploit Suite
• Detected 87 memory-safety bugs in glibc and in the SPEC-CPU 2017 benchmark programs that, to our

knowledge, had not been previously detected
• Our design can detect & prevent bugs in unmodified/un-instrumented libraries

17

18

Thank you

